Healthcare and Medicine Reference
In-Depth Information
80. Dudley CA, Erbel-Sieler C, Estill SJ, et al. Altered patterns of sleep
and behavioral adaptability in NPAS2-deficient mice. Science
2003;301(5631):379-383.
81. Honma S, Kawamoto T, Takagi Y, et al. Dec1 and Dec2 are regula-
tors of the mammalian molecular clock. Nature 2002;419:841-
844.
82. Sato F, Kawamoto T, Fujimoto K, et al. Functional analysis of the
basic helix-loop-helix transcription factor DEC1 in circadian regu-
lation. Interaction with BMAL1. Eur J Biochem 2004;271:4409-
4419.
83. Li Y, Song X, Ma Y, et al. DNA binding, but not interaction with
Bmal1, is responsible for DEC1-mediated transcription regulation
of the circadian gene mPer1 . Biochem J 2004;382:895-904.
84. He Y, Jones CR, Fujiki N, et al. The transcriptional repressor
DEC2 regulates sleep length in mammals. Science 2009;325(5942):
866-870.
85. Cheng MY, Bullock CM, Li C, et al. Prokineticin 2 transmits the
behavioral circadian rhythm of the suprachiasmatic nucleus. Nature
2002;417:405-410.
86. Li J-D, Hu W-P, Boehmer L, et al. Attenuated circadian rhythms
in mice lacking the Prokineticin 2 gene. J Neurosci 2006;26:11615-
11623.
87. Hu W-P, Li J-D, Zhang C, et al. Altered circadian and homeostatic
sleep regulation in Prokineticin 2 2-deficient mice. Sleep 2007;30:247-
256.
88. Kramer A, Yang FC, Snodgrass P, et al. Regulation of daily locomo-
tor activity and sleep by hypothalamic EGF receptor signaling.
Science 2001;294(5551):2511-2515.
89. Harmar AJ. An essential role for peptidergic signalling in the
control of circadian rhythms in the suprachiasmatic nuclei. J Neu-
roendocrinol 2003;15(4):335-338.
90. Kraves S, Weitz CJ. A role for cardiotrophin-like cytokine in the
circadian control of mammalian locomotor activity. Nat Neurosci
2006;9:212-219.
91. Czeisler CA, Shanahan TL, Klerman EB, et al. Suppression of
melatonin secretion in some blind patients by exposure to bright
light. N Engl J Med 1995;332(1):6-11.
92. Foster RG, Provencio I, Hudson D, et al. Circadian photoreception
in the retinally degenerate mouse (rd/rd) . J Comp Physiol (A)
1991;169(1):39-50.
93. Freedman MS, Lucas RJ, Soni B, et al. Regulation of mammalian
circadian behavior by non-rod, non-cone, ocular photoreceptors.
Science 1999;284(5413):502-504.
94. von Schantz M, Provencio I, Foster RG. Recent developments in
circadian photoreception: more than meets the eye. Invest Ophthal-
mol Vis Sci 2000;41(7):1605-1607.
95. Moore RY, Lenn NJ. A retinohypothalamic projection in the rat.
J Comp Neurol 1972;146(1):1-14.
96. Johnson RF, Moore RY, Morin LP. Loss of entrainment and ana-
tomical plasticity after lesions of the hamster retinohypothalamic
tract. Brain Res 1988;460(2):297-313.
97. Provencio I, Jiang G, De Grip WJ, et al. Melanopsin: an opsin in
melanophores, brain, and eye. Proc Natl Acad Sci U S A 1998;95(1):
340-345.
98. Hannibal J, Hindersson P, Knudsen SM, et al. The photopigment
melanopsin is exclusively present in pituitary adenylate cyclase-
activating polypeptide-containing retinal ganglion cells of the reti-
nohypothalamic tract. J Neurosci 2002;22(1):RC191.
99. Panda S, Sato TK, Castrucci AM, et al. Melanopsin (Opn4) require-
ment for normal light-induced circadian phase shifting. Science
2002;298(5601):2213-2216.
100. Ruby NF, Brennan TJ, Xie X, et al. Role of melanopsin in circadian
responses to light. Science 2002;298(5601):2211-2213.
101. Kapfhamer D, Valladares O, Sun Y, et al. Mutations in Rab3a alter
circadian period and homeostatic response to sleep loss in the
mouse. Nat Genet 2002;32(2):290-295.
102. Yang S, Farias M, Kapfhamer D, et al. Biochemical, molecular and
behavioral phenotypes of Rab3A mutations in the mouse. Genes
Brain Beha 2007;6:77-96.
103. Roybal K, Theobold D, Graham A, et al. Mania-like behavior
induced by disruption of CLOCK. Proc Natl Acad Sci U S A 2007;
104(15):6406-6411.
104. Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syn-
drome in circadian Clock mutant mice. Science 2005;308(5724):
1043-1045.
105. Gorbacheva VY, Kondratov RV, Zhang R, et al. Circadian sensitivity
to chemotherapeutic agent cyclophosphamide depends on the func-
tional status of the CLOCK/BMAL1 transactivation complex. Proc
Natl Acad Sci U S A 2005;102(9):3407-3412.
106. Miller BH, Olson SL, Turek FW, et al. Circadian clock mutation
disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol
2004;14(15):1367-1373.
107. Naylor E, Bergmann BM, Krauski K, et al. The circadian clock
mutation alters sleep homeostasis in the mouse. J Neurosci
2000;20(21):8138-8143.
108. Kopp C, Albrecht U, Zheng B, Tobler I. Homeostatic sleep regula-
tion is preserved in mPer1 and mPer2 mutant mice. Eur J Neurosci
2002;16(6):1099-1106.
109. Shiromani PJ, Xu M, Winston EM, et al. Sleep rhythmicity
and homeostasis in mice with targeted disruption of mPeriod
genes. Am J Physiol Regul Integr Comp Physiol 2004;287(1):
R47-R57.
110. Wisor JP, O'Hara BF, Terao A, et al. A role for cryptochromes in
sleep regulation. BMC Neurosci 2002;3(1):20.
111. Laposky AD, Easton AE, Bradfield CA, et al. Null allele mice for
the MOP-3 gene have increased sleep time and altered sleep con-
solidation. Sleep 2003;26:A110.
112. Dudley CA, Erbel-Sieler C, Estill SJ, et al. Altered patterns of sleep
and behavioral adaptability in NPAS2-deficient mice. Science 2003;
301(5631):379-383.
113. Franken P, Lopez-Molina L, Marcacci L, et al. The transcription
factor DBP affects circadian sleep consolidation and rhythmic EEG
activity. J Neurosci 2000;20(2):617-625.
114. Shaw PJ, Tononi G, Greenspan RJ, Robinson DF. Stress response
genes protect against lethal effects of sleep deprivation in Drosophila .
Nature 2002;417(6886):287-291.
115. Hendricks JC, Lu S, Kume K, et al. Gender dimorphism in the role
of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila
melanogaster . J Biol Rhythms 2003;18(1):12-25.
116. Duez H, Staels B. Nuclear receptors linking circadian rhythms and
cardiometabolic control. Arterioscler Thromb Vasc Biol 2010;30:
1529-1534.
Search Pocayo ::




Custom Search